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COMMENT 
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Abstract. By using a Grassmannian polymer representation for the fermionic functional 
determinant we argue the triviality of the vectorial four-fermion interaction for spacetime 
with dimensionality greater than two. 

One of the most interesting problems in D-dimensional Euclidean field theories is the 
appearance of a critical dimensionality where above this value the associated field 
theory becomes trivial [ 1,2]. 

Our aim in this comment is to present the Parisi geometrical analysis [3] generalised 
to the fermionic case by analysing the critical spacetime dimension for the vectorial 
four-fermion interaction (the Abelian Thirring model). 

Let us start our analysis by considering the Thirring model Euclidean partition 
functional in R D  with the fermionic fields integrated out: 

where D(A,)= y,(a, +gA,) is the Euclidean Dirac operator in the presence of the 
external auxiliary vectorial field and g is the bare theory’s coupling constant. 

We aim to show that Z[g]  = Z[g = 01 when D > 2 since this result will lead, formally 
at least, to be triviality of (1). 

By using the fermionic loop representation for det D(A,), as displayed in [4], we 
can write this functional determinant as a Grassmannian path integral: 

det D(A,) = c exp( I,’ d5  deA,rxL(& e)] DxL(5, 0)) 
[ x L[ 6. e I I 

rx L( 5.0 11 
= c d ~ x ~ , ( X ) ~ ; [ x ; ( t ,  (2) 

where the sum X [ x ; ( 5 . e ) l  is defined by (4) in [4] and J:[xz([, e)] is the current associated 
with the Grassmannian loop x:((, e)=x,([)+ie$,([) (O2=0; Os62 1). Through a 
g-power series expansion and integrating the Gaussian A, (x) functional integral we 
get, for instance, for its first coefficient dz[g]/dgl,,, = zl , the following expression: 

z1 = C exp 2 lo’ d[ d e  Io’ d t ’  de’ DxL(6, e ) S ‘ D ’  
[ x:( 6.0 I I 

x (Xz(5, e)  -x:(5’, 0’) DxF(5’, 6’). (3) 
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We can understand (3) as the partition functional associated with a gas of closed 
polymers [,yL( 5, e)] possessing a Grassmannian structure and interacting among them- 
selves by a self-avoiding interaction S’”’[x:(€, e)  -x,(5’, e‘)]. 

In order to argue the triviality of the fermionic polymer gas we follow Parisi [3] 
by assigning a Hausdorff dimension d ,  for the ‘set’ [x:([, e ) ;  @ = O ;  O s  6 s  11. A 
natural Hausdorff dimension for this set is given by the exponent of the fermion free 
field propagator in the momentum space which is 1, so d H [ , y z ( &  e)] = 1 .  

By using now the geometrical intersection rule d , ( A  n B )  = d , ( A )  + d H (  B )  - D [3], 
with D being the spacetime dimensionality, we obtain that the support set of the 
self-avoiding interaction [ ~ 3 ‘ ~ ’ ( x , (  €, 6 )  - x, (t’, e’)] has a negative Hausdorff dimension 
for D > 2 which means that this set is empty. 

As a consequence we have the analytical relation 

which indicates, in turn, the triviality of the theory, since this argument can be 
straightforwardly applied for any arbitrary coefficient z,, and leading to the result z ,  = z ,  . 

Finally we remark that by reformulating the Thirring theory in the loop space, we 
can in principle define the theory for any general manifold m as spacetime by including 
the constraint [xL({, e)]= m in the path integral (3). Note that m may be fluctuating 
PI. 

Work in this direction is in progress and will appear elsewhere. 
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